2024
Observed Gravitational-Wave Populations. T. Callister. |
To appear in Encyclopedia of Astrophysics, 1st ed. (editor-in-chief I. Mandel), Elsevier. ArXiv: 2410.19145 |
A neural network emulator of the Advanced LIGO and Advanced Virgo selection function. T. Callister, R. Essick, D. Holz. |
Phys. Rev. D, in press (2024). ArXiv: 2408.16828 |
A Star Cluster Population of High Mass Black Hole Mergers in Gravitational Wave Data. F. Antonini, I. Romero-Shaw, T. Callister. |
Phys. Rev. Letters, in press (2024). ArXiv: 2406.19044 |
No need to know: astrophysics-free gravitational-wave cosmology. A. Farah, T. Callister, J. María Ezquiaga, M. Zevin, D. Holz. |
Astrophys. J., in press (2024). ArXiv: 2404.02210 |
Background information: a study on the sensitivity of astrophysical gravitational-wave background searches. A. Renzini, T. Callister, K. Chatziioannou, W. Farr. |
Phys. Rev. D 110, 023014 (2024) ArXiv: 2403.14793 |
Gravitational waves carry information beyond effective spin parameters but it is hard to extract. S. Miller, Z. Koe, T. Callister, K. Chatziioannou. |
Phys. Rev. D 109, 104036 (2024) ArXiv: 2401.05613 |
2023
A New Probe of Gravitational Parity Violation Through (Non-)Observation of the Stochastic Gravitational- Wave Background. T. Callister, L. Jenks, D. Holz, N. Yunes. |
Phys. Rev. D, in press (2024) ArXiv: 2312.12532 |
The metallicity dependence and evolutionary times of merging binary black holes: Combined constraints from individual gravitational-wave detections and the stochastic background. K. Turbang, M. Lalleman, T. Callister, N. van Remortel. |
Astrophys. J. 967, 142 (2024) ArXiv: 2310.17625 |
pygwb: A Python-based Library for Gravitational-wave Background Searches. A. Renzini et al. (incl. T. Callister). |
Astrophys. J. 952, 25 (2023) ArXiv: 2303.15696 |
A parameter-free tour of the binary black hole population. T. Callister, W. Farr. |
Phys. Rev. X 14, 021005 (2024) ArXiv: 2302.07289 |
2022
No evidence that the majority of black holes in binaries have zero spin. T. Callister, S. Miller, K. Chatziioannou, W. Farr. |
Astrophys. J. Letters 937, L13 (2022). ArXiv: 2205.08574 |
The binary black hole spin distribution likely broadens with redshift. S. Biscoveanu, T. Callister, C. J. Haster, K. Y. Ng, S. Vitale, W. Farr. |
Astrophys. J. Letters 932, L19 (2022). ArXiv: 2204.01578 |
2021
Gravitational-wave geodesy: Defining false alarm probabilities with respect to correlated noise. K. Janssens, T. Callister, N. Christensen, et al. |
Phys. Rev. D. 105, 082001 (2022) ArXiv: 2112.03560 |
The population of merging compact binaries inferred using gravitational waves through GWTC-3. LIGO, Virgo, & KAGRA Collaborations (Writing Team & Core Analyst) |
Phys. Rev. X 13, 011048 (2023) ArXiv: 2111.03634 |
The redshift evolution of the binary black hole merger rate: a weighty matter L. van Son, S. de Mink, T. Callister, et al. |
Astrophys. J. 931, 17 (2022) ArXiv: 2110.01634 |
LIGO-Virgo correlations between mass ratio and effective inspiral spin: Testing the active galactic nuclei channel B. McKernan, K. E. S. Ford, T. Callister, et al. |
Mon. Not. Roy. Astron. Soc. 514, 3886 (2022) ArXiv: 2107.07551 |
Who Ordered That? Unequal-mass binary black hole mergers have larger effective spins T. Callister, C. J. Haster, K. Y. Ng, S. Vitale, W. Farr |
Astrophys. J. Letters 922, L5 (2021) ArXiv: 2106.00521 |
A Thesaurus for Common Priors in Gravitational-Wave Astronomy T. Callister |
ArXiv Note (2021) ArXiv: 2104.09508 |
Implications for first-order cosmological phase transitions from the third LIGO-Virgo observing run A. Romero, K. Martinovic, T. Callister, et al. |
Phys. Rev. Letters 126, 151301 (2021) ArXiv: 2102.01714 |
Prospects of gravitational-wave detections from common-envelope evolution with LISA M. Renzo, T. Callister, K. Chatziioannou, L. A. C. van Son, et al. |
Astrophys. J. 919, 128 (2021) ArXiv: 2102.00078 |
Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run LIGO, Virgo, and KAGRA Collaborations (Writing Team & Core Analyst) |
Phys. Rev. D 104, 022004 (2021) ArXiv: 2101.12130 |
When are LIGO/Virgo’s Big Black-Hole Mergers? M. Fishbach, Z. Doctor, T. Callister, et al. |
Astrophys. J. 912, 98 (2021) ArXiv: 2101.07699 |
2020
State of the field: Binary black hole spins, natal kicks, and prospects for isolated field formation after GWTC-2 T. Callister, W. M. Farr, M. Renzo |
Astrophys. J. 920, 157 (2021) ArXiv: 2011.09570 |
Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning. K. Wong, K. Breivik, K. Kremer, T. Callister |
Phys. Rev. D 103, 083021 (2021) ArXiv: 2011.03564 |
Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. LIGO Scientific Collaboration and Virgo Collaboration (Writing Team & Core Analyst) |
Astrophys. J. Letters 913, L7 (2021) ArXiv: 2010.14533 |
Shouts and Murmurs: Combining Individual Gravitational-Wave Sources with the Stochastic Backgroundto Measure the History of Binary Black Hole Mergers T. Callister, M. Fishbach, D. Holz, W. Farr |
Astrophys. J. Letters 896, L32 (2020) ArXiv: 2003.12152 |
The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-Wave Events S. Miller, T. A. Callister, W. Farr |
Astrophys. J. 895, 128 (2020) ArXiv: 2001.06051 |
2019
New Limits on the Low-Frequency Radio Transient Sky Using 31 hr of All-Sky Data with the OVRO-LWA M. M. Anderson et al. (incl. T. Callister) |
Astrophys. J. 886, 123 (2019) ArXiv: 1911.04591 |
A First Search for Prompt Radio Emission from a Gravitational-Wave Event T. A. Callister, M. M. Anderson, G. Hallinan, et al. |
Astrophys. J. Letters 877, L39 (2019) ArXiv: 1903.06786 |
A search for the isotropic stochastic background using data from Advanced LIGO's second observing run LIGO Scientific Collaboration and Virgo Collaboration (Lead authors: A. Matas & T. Callister) |
Phys. Rev. D 100, 061101 (2019) ArXiv: 1903.02886 |
2018
First Search for a Stochastic Gravitational-Wave Background from Ultralight Bosons L. Tsukada, T. Callister, A. Matas, P. Meyers |
Phys. Rev. D 99, 103015 (2019) ArXiv: 1812.09622 |
Gravitational-Wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-Wave Background T. A. Callister, M. W. Coughlin, J. B. Kanner |
Astrophys. J. Letters 869, L28 (2018) ArXiv: 1808.03716 |
A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background LIGO Scientific Collaboration and Virgo Collaboration (Lead author: T. Callister) PRL Editor's Suggestion |
Phys. Rev. Lett. 120, 201102 (2018) ArXiv: 1802.10194 |
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO P. B. Covas et al. (incl. T. Callister) |
Phys. Rev. D 97, 082002 (2018) ArXiv: 1801.07204 |
2017
Polarization-based tests of gravity with the stochastic gravitational-wave background T. Callister, S. A. Biscoveanu, N. Christensen, M. Isi, A. Matas, et al. |
Phys. Rev. X 7, 041058 (2017) ArXiv: 1704.08373 |
Observing gravitational waves with a single detector T. A. Callister, J. B. Kanner, T. J. Massinger, S. Dhurandhar, and A. J. Weinstein. |
Class. Quantum Grav. 34, 155007 (2017) ArXiv: 1704.00818 |
2016
Upper limits on the stochastic gravitational-wave background from Advanced LIGO's first observing run LIGO Scientific Collaboration and Virgo Collaboration (incl. T. Callister) |
Phys. Rev. Letters 118, 121101 (2017) ArXiv: 1612.02029 |
Limits of astrophysics with gravitational-wave backgrounds T. Callister, L. Sammut, S. Qiu, I. Mandel, and E. Thrane. |
Phys. Rev. X 6, 031018 (2016) ArXiv: 1604.02513 |
Gravitational-wave constraints on the progenitors of fast radio bursts T. Callister, J. Kanner, and A. Weinstein. |
Astrophys. J. Letters 825, L12 (2016) ArXiv: 1603.08867 |