2024

Observed Gravitational-Wave Populations.
T. Callister.
To appear in Encyclopedia of Astrophysics, 1st ed. (editor-in-chief I. Mandel), Elsevier.
ArXiv: 2410.19145
A neural network emulator of the Advanced LIGO and Advanced Virgo selection function.
T. Callister, R. Essick, D. Holz.
Phys. Rev. D, in press (2024).
ArXiv: 2408.16828
A Star Cluster Population of High Mass Black Hole Mergers in Gravitational Wave Data.
F. Antonini, I. Romero-Shaw, T. Callister.
Phys. Rev. Letters, in press (2024).
ArXiv: 2406.19044
No need to know: astrophysics-free gravitational-wave cosmology.
A. Farah, T. Callister, J. María Ezquiaga, M. Zevin, D. Holz.
Astrophys. J., in press (2024).
ArXiv: 2404.02210
Background information: a study on the sensitivity of astrophysical gravitational-wave background searches.
A. Renzini, T. Callister, K. Chatziioannou, W. Farr.
Phys. Rev. D 110, 023014 (2024)
ArXiv: 2403.14793
Gravitational waves carry information beyond effective spin parameters but it is hard to extract.
S. Miller, Z. Koe, T. Callister, K. Chatziioannou.
Phys. Rev. D 109, 104036 (2024)
ArXiv: 2401.05613

2023

A New Probe of Gravitational Parity Violation Through (Non-)Observation of the Stochastic
Gravitational- Wave Background.
T. Callister, L. Jenks, D. Holz, N. Yunes.
Phys. Rev. D, in press (2024)
ArXiv: 2312.12532
The metallicity dependence and evolutionary times of merging binary black holes:
Combined constraints from individual gravitational-wave detections and the stochastic background.
K. Turbang, M. Lalleman, T. Callister, N. van Remortel.
Astrophys. J. 967, 142 (2024)
ArXiv: 2310.17625
pygwb: A Python-based Library for Gravitational-wave Background Searches.
A. Renzini et al. (incl. T. Callister).
Astrophys. J. 952, 25 (2023)
ArXiv: 2303.15696
A parameter-free tour of the binary black hole population.
T. Callister, W. Farr.
Phys. Rev. X 14, 021005 (2024)
ArXiv: 2302.07289

2022

No evidence that the majority of black holes in binaries have zero spin.
T. Callister, S. Miller, K. Chatziioannou, W. Farr.
Astrophys. J. Letters 937, L13 (2022).
ArXiv: 2205.08574
The binary black hole spin distribution likely broadens with redshift.
S. Biscoveanu, T. Callister, C. J. Haster, K. Y. Ng, S. Vitale, W. Farr.
Astrophys. J. Letters 932, L19 (2022).
ArXiv: 2204.01578

2021

Gravitational-wave geodesy: Defining false alarm probabilities with respect to correlated noise.
K. Janssens, T. Callister, N. Christensen, et al.
Phys. Rev. D. 105, 082001 (2022)
ArXiv: 2112.03560
The population of merging compact binaries inferred using gravitational waves through GWTC-3.
LIGO, Virgo, & KAGRA Collaborations (Writing Team & Core Analyst)
Phys. Rev. X 13, 011048 (2023)
ArXiv: 2111.03634
The redshift evolution of the binary black hole merger rate: a weighty matter
L. van Son, S. de Mink, T. Callister, et al.
Astrophys. J. 931, 17 (2022)
ArXiv: 2110.01634
LIGO-Virgo correlations between mass ratio and effective inspiral spin:
Testing the active galactic nuclei channel
B. McKernan, K. E. S. Ford, T. Callister, et al.
Mon. Not. Roy. Astron. Soc. 514, 3886 (2022)
ArXiv: 2107.07551
Who Ordered That? Unequal-mass binary black hole mergers have larger effective spins
T. Callister, C. J. Haster, K. Y. Ng, S. Vitale, W. Farr
Astrophys. J. Letters 922, L5 (2021)
ArXiv: 2106.00521
A Thesaurus for Common Priors in Gravitational-Wave Astronomy
T. Callister
ArXiv Note (2021)
ArXiv: 2104.09508
Implications for first-order cosmological phase transitions from the third LIGO-Virgo observing run
A. Romero, K. Martinovic, T. Callister, et al.
Phys. Rev. Letters 126, 151301 (2021)
ArXiv: 2102.01714
Prospects of gravitational-wave detections from common-envelope evolution with LISA
M. Renzo, T. Callister, K. Chatziioannou, L. A. C. van Son, et al.
Astrophys. J. 919, 128 (2021)
ArXiv: 2102.00078
Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run
LIGO, Virgo, and KAGRA Collaborations (Writing Team & Core Analyst)
Phys. Rev. D 104, 022004 (2021)
ArXiv: 2101.12130
When are LIGO/Virgo’s Big Black-Hole Mergers?
M. Fishbach, Z. Doctor, T. Callister, et al.
Astrophys. J. 912, 98 (2021)
ArXiv: 2101.07699

2020

State of the field: Binary black hole spins, natal kicks, and prospects for isolated field formation
after GWTC-2
T. Callister, W. M. Farr, M. Renzo
Astrophys. J. 920, 157 (2021)
ArXiv: 2011.09570
Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and
globular cluster radii from a population of binary hole mergers via deep learning.
K. Wong, K. Breivik, K. Kremer, T. Callister
Phys. Rev. D 103, 083021 (2021)
ArXiv: 2011.03564
Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog.
LIGO Scientific Collaboration and Virgo Collaboration (Writing Team & Core Analyst)
Astrophys. J. Letters 913, L7 (2021)
ArXiv: 2010.14533
Shouts and Murmurs: Combining Individual Gravitational-Wave Sources with the
Stochastic Backgroundto Measure the History of Binary Black Hole Mergers
T. Callister, M. Fishbach, D. Holz, W. Farr
Astrophys. J. Letters 896, L32 (2020)
ArXiv: 2003.12152
The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-Wave Events
S. Miller, T. A. Callister, W. Farr
Astrophys. J. 895, 128 (2020)
ArXiv: 2001.06051

2019

New Limits on the Low-Frequency Radio Transient Sky Using 31 hr of All-Sky Data with the OVRO-LWA
M. M. Anderson et al. (incl. T. Callister)
Astrophys. J. 886, 123 (2019)
ArXiv: 1911.04591
A First Search for Prompt Radio Emission from a Gravitational-Wave Event
T. A. Callister, M. M. Anderson, G. Hallinan, et al.
Astrophys. J. Letters 877, L39 (2019)
ArXiv: 1903.06786
A search for the isotropic stochastic background using data from Advanced LIGO's second observing run
LIGO Scientific Collaboration and Virgo Collaboration (Lead authors: A. Matas & T. Callister)
Phys. Rev. D 100, 061101 (2019)
ArXiv: 1903.02886

2018

First Search for a Stochastic Gravitational-Wave Background from Ultralight Bosons
L. Tsukada, T. Callister, A. Matas, P. Meyers
Phys. Rev. D 99, 103015 (2019)
ArXiv: 1812.09622
Gravitational-Wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-Wave Background
T. A. Callister, M. W. Coughlin, J. B. Kanner
Astrophys. J. Letters 869, L28 (2018)
ArXiv: 1808.03716
A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
LIGO Scientific Collaboration and Virgo Collaboration (Lead author: T. Callister)
PRL Editor's Suggestion
Phys. Rev. Lett. 120, 201102 (2018)
ArXiv: 1802.10194
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent
gravitational waves in the first two observing runs of Advanced LIGO
P. B. Covas et al. (incl. T. Callister)
Phys. Rev. D 97, 082002 (2018)
ArXiv: 1801.07204

2017

Polarization-based tests of gravity with the stochastic gravitational-wave background
T. Callister, S. A. Biscoveanu, N. Christensen, M. Isi, A. Matas, et al.
Phys. Rev. X 7, 041058 (2017)
ArXiv: 1704.08373
Observing gravitational waves with a single detector
T. A. Callister, J. B. Kanner, T. J. Massinger, S. Dhurandhar, and A. J. Weinstein.
Class. Quantum Grav. 34, 155007 (2017)
ArXiv: 1704.00818

2016

Upper limits on the stochastic gravitational-wave background from Advanced LIGO's first observing run
LIGO Scientific Collaboration and Virgo Collaboration (incl. T. Callister)
Phys. Rev. Letters 118, 121101 (2017)
ArXiv: 1612.02029
Limits of astrophysics with gravitational-wave backgrounds
T. Callister, L. Sammut, S. Qiu, I. Mandel, and E. Thrane.
Phys. Rev. X 6, 031018 (2016)
ArXiv: 1604.02513
Gravitational-wave constraints on the progenitors of fast radio bursts
T. Callister, J. Kanner, and A. Weinstein.
Astrophys. J. Letters 825, L12 (2016)
ArXiv: 1603.08867

Address

The University of Chicago
5640 S. Ellis Ave.
Chicago, IL 60637
United States of America