About
I’m a Schmidt “AI in Science” Fellow in the University of Chicago’s Kavli Institute for Cosmological Physics.
I work broadly within the realm of gravitationalwave astronomy.
Nearly infinitesimal ripples in the fabric of spacetime, gravitational waves are generated by the most cataclysmic events in the Universe, including the explosions of stars and the relativistic collisions of black holes.
My interests lie in the continued search for gravitational waves, the development of new and more powerful detection methods, and the use of gravitational waves as tools with which to answer novel astrophysical questions.
Before the KICP, I worked as a Research Fellow at the Flatiron Institute’s Center for Computational Astrophysics.
I completed my Ph.D. in Physics at Caltech, after obtaining an M.Phil. in Astronomy at the University of Cambridge (funded by a Churchill Scholarship).
Before Cambridge, I attended Carleton College in Northfield, MN.
publications
Selected Publications
2024

Gravitational waves carry information beyond effective spin parameters but it is hard to extract.
S. Miller, Z. Koe, T. Callister, K. Chatziioannou.
Submitted to Phys. Rev. D.
ArXiv 2401.05613
2023

A New Probe of Gravitational Parity Violation Through (Non)Observation of the Stochastic Gravitational Wave Background.
T. Callister, L. Jenks, D. Holz, N. Yunes.
Submitted to Phys. Rev. X.
ArXiv 2312.12532

The metallicity dependence and evolutionary times of merging binary black holes: Combined constraints from individual gravitationalwave detections and the stochastic background.
K. Turbang, M. Lalleman, T. Callister, N. van Remortel.
Submitted to ApJ.
ArXiv 2310.17625

A parameterfree tour of the binary black hole population.
T. Callister, W. Farr.
Phys. Rev. X (In Press).
ArXiv 2302.07289

The population of merging compact binaires inferred using gravitational waves through GWTC3.
LIGO, Virgo, and KAGRA Collaborations (Writing Team & Core Analyst).
Phys. Rev. X 13, 011048 (2023).
ArXiv: 2111.03634
2022

No evidence that the majority of black holes in binaries have zero spin.
T. Callister, S. Miller, K. Chatziioannou, W. Farr.
Astrophys. J. Letters 937, L13 (2022).
ArXiv 2205.08574

The binary black hole spin distribution likely broadens with redshift.
S. Biscoveanu, T. Callister, C. J. Haster, et al.
Astrophys. J. Letters 932, L19 (2022)
ArXiv: 2204.01578

Gravitationalwave geodesy: Defining false alarm probabilies with respect to correlated noise.
K. Janssens, T. Callister, N. Christensen, et al.
Phys. Rev. D 105, 082001 (2022).
ArXiv: 2112.03560

The redshift evolution of the binary black hole merger rate: a weighty matter.
L. van Son, S. de Mink, T. Callister, et al.
Astrophysical J. 931, 17 (2022).
ArXiv: 2110.01634

LIGOVirgo correlations between mass ratio and effective inspiral spin: testing the active galactic nuclei channel.
B. McKernan, K. E. S. Ford, T. Callister, et al.
Mon. Not. Roy. Astron. Soc. 514, 3886 (2022).
ArXiv: 2107.07551
2021

Who Ordered That? Unequalmass binary black hole mergers have larger effective spins.
T. Callister, C. J. Haster, K. Y. Ng, S. Vitale, and W. Farr.
Astrophysical J. Letters 922, L5 (2021).
ArXiv: 2106.00521

Prospects of gravitationalwave detections from commonenvelope evolution with LISA.
M. Renzo, T. Callister, K. Chatziioannou, L. A. C. van Son, et al.
Astrophysical J. 919, 128 (2021).
ArXiv: 2102.00078

State of the field: Binary black hole spins, natal kicks, and prospects for isolated field formation after GWTC2.
T. Callister, W. M. Farr, M. Renzo.
Astrophysical J. 920, 157 (2021).
ArXiv: 2011.09570

A Thesaurus for Common Priors in GravitationalWave Astronomy.
T. Callister. ArXiv Note: 2104.09508

Implications for firstorder cosmological phase transitions from the third LIGOVirgo observing run.
A. Romero, K. Martinovic, T. Callister, et al.
Physical Review Letters 126, 151301 (2021).
ArXiv: 2102.01714

Upper Limits on the Isotropic GravitationalWave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run.
LIGO, Virgo, and KAGRA Collaborations (Writing Team & Core Analyst).
Phys. Rev. D 104, 022004 (2021).
ArXiv: 2101.12130

When are LIGO/Virgo's Big BlackHole Mergers?
M. Fishbach, Z. Doctor, T. Callister, et al.
Astrophys. J. 912, 98 (2021).
ArXiv: 2101.07699

Joint constraints on the fieldcluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning.
K. Wong, K. Breivik, K. Kremer, T. Callister.
Phys. Rev. D 103, 083021 (2021).
ArXiv: 2011.03564

Population Properties of Compact Objects from the Second LIGOVirgo GravitationalWave Transient Catalog.
LIGO Scientific Collaboration and Virgo Collaboration (Writing Team & Core Analyst).
Astrophys. J. Letters 913, L7 (2021).
ArXiv: 2010.14533
2020

Shouts and Murmurs: Combining Individual GravitationalWave Sources with the Stochastic Background to Measure the History of Binary Black Hole Mergers.
T. Callister, M. Fishbach, D. Holz, W. Farr.
Astrophys. J. Letters 896, L32 (2020).
ArXiv: 2003.12152

The Low Effective Spin of Binary Black Holes and Implications for Individual GravitationalWave Events.
S. Miller, T. A. Callister, W. Farr.
Astrophys. J. 895, 128 (2020).
ArXiv: 2001.06051
2019

A First Search for Prompt Radio Emission from a GravitationalWave Event.
T. A. Callister, M. M. Anderson, G. Hallinan, et al.
Astrophys. J. Letters 877, L39 (2019).
ArXiv: 1903.06786

A search for the isotropic stochastic background using data from Advanced LIGO’s second observing run.
LIGO Scientific Collaboration and Virgo Collaboration (Writing Team & Core Analyst).
Phys. Rev. D 100, 061101 (2019).
ArXiv: 1903.02886

First Search for a Stochastic GravitationalWave Background from Ultralight Bosons.
L. Tsukada, T. Callister, A. Matas, P. Meyers.
Phys. Rev. D 99, 103015 (2019).
ArXiv: 1812.09622
2018

GravitationalWave Geodesy: A New Tool for Validating Detection of the Stochastic GravitationalWave Background.
T. A. Callister, M. W. Coughlin, J. B. Kanner.
Astrophys. J. Letters 869, L28 (2018).
ArXiv: 1808.03716

A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic GravitationalWave Background.
LIGO Scientific Collaboration and Virgo Collaboration (Lead Author).
Phys. Rev. Lett. 120, 201102 (2018).
ArXiv: 1802.10194

Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO.
P. B. Covas et al. (incl. T. Callister)
Phys. Rev. D 97, 082002 (2018).
ArXiv: 1801.07204
2017

Polarizationbased tests of gravity with the stochastic gravitationalwave background.
T. Callister, S. A. Biscoveanu, N. Christensen, M. Isi, A. Matas, et al.
Phys. Rev. X 7, 041058 (2017).
ArXiv: 1704.08373

Observing gravitational waves with a single detector.
T. A. Callister, J. B. Kanner, T. J. Massinger, S. Dhurandhar, and A. J. Weinstein.
Class. Quantum Grav. 34, 155007 (2017).
ArXiv: 1704.00818
2016

Limits of astrophysics with gravitationalwave backgrounds.
T. Callister, L. Sammut, S. Qiu, I. Mandel, and E. Thrane.
Phys. Rev. X 6, 031018 (2016).
ArXiv: 1604.02513

Gravitationalwave constraints on the progenitors of fast radio bursts.
T. Callister, J. Kanner, and A. Weinstein.
Astrophys. J. Letters 825, L12 (2016).
ArXiv: 1603.08867